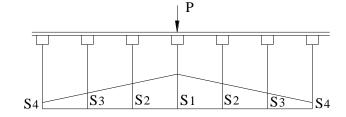
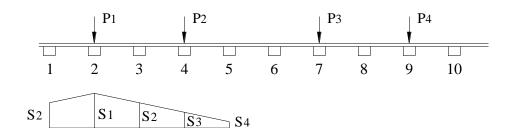


KENTRACK Version 2.0.1

Railway Trackbed Structural Design Software

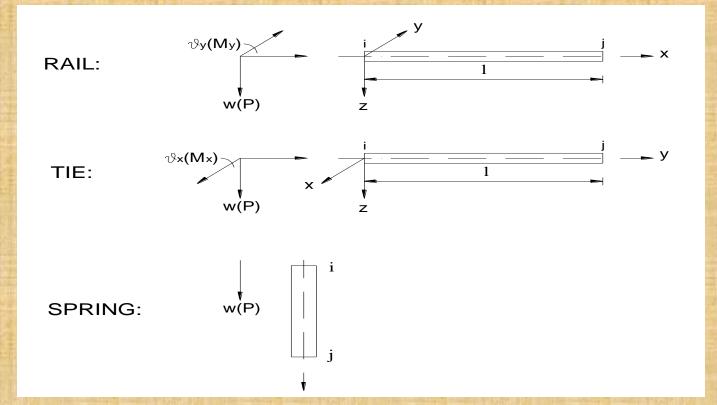

Background

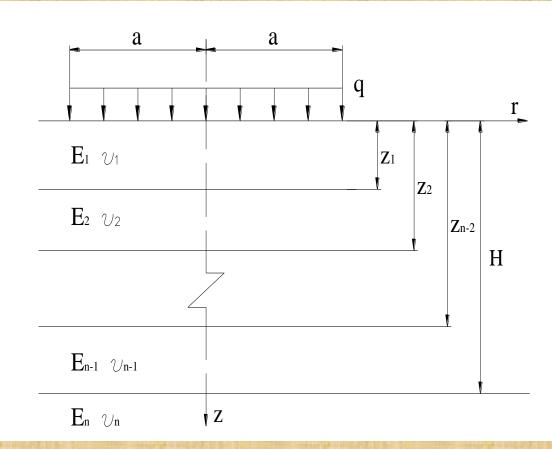

KENTRACK

- Developed specifically to analyze HMA trackbeds
- Has the versatility to analyze all-granular trackbeds
- Initially a DOS based program
- Upgraded to a windows based platform with a Graphic User Interface

Superposition of Loads

$$S_1' = S_2 \frac{P_1}{P} + S_4 \frac{P_2}{P}$$





Finite Element Method

- To calculate stresses and strains in rail and tie

Multilayered System

- To calculate stresses and strains in the layers

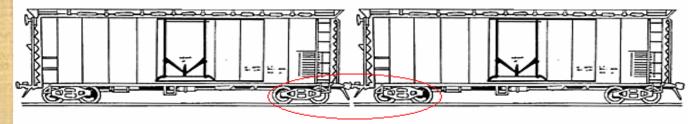
- Material Properties
 - HMA trackbed is comprised of ballast, HMA and subgrade
 - All-granular trackbed is comprised of ballast, subballast and subgrade
 Different equations are used to describe the material properties

Ballast

In a new trackbed it behaves non-linearly
In an aged trackbed it behaves linearly

 $E = K_1 \theta^{K_2}$

 $\theta = \sigma_1 + \sigma_2 + \sigma_3 + \gamma z (1 + 2K_0)$


Subgrade
 Linearly elastic material

- Hot Mix Asphalt (HMA) Visco-elastic material The dynamic modulus of HMA depends on - Temperature - Aggregate passing No. 200 sieve in % - Volume of bitumen % - Volume of air voids % - Asphalt viscosity
 - Load frequency

- Damage Analysis
 - Based on minor linear damage analysis criteria
 - Performed by periods (seasons, months)

$$L = \frac{1}{\sum_{i=1}^{n} \frac{N_p}{N_a or N_d}}$$

Predicted number of repetitions

Wheel Load

For one car the total weight

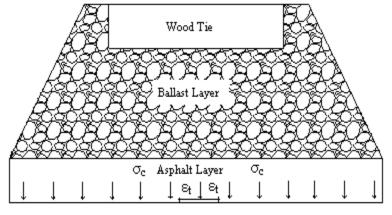
The number of repetitions assumed per year

The traffic per year

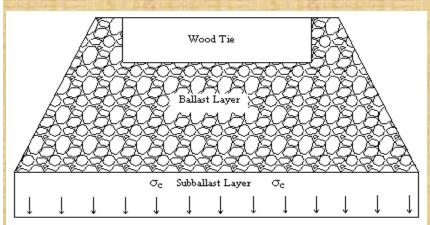
- = 36000 lb/wheel
- = 36000 lb/wheel x 8
- = 286,000 lb/rep / 2000
- = 143 ton/rep
- = 200,000 rep/yr
- = 200,000 rep/yr x 143 ton/rep = 28,600,000 GT/yr / 1 x 10⁶ = 28.6 MGT/yr

- HMA Damage Analysis
 - Fatigue cracking controls failure
 - Fatigue cracking is governed by the tensile strain at the bottom of HMA
 - Based on highway experience
 - Number of allowable repetitions (N_a) before failure

 $N_a = 0.0795 \varepsilon_t^{-3.291} E_a^{-0.853}$


- Subgrade Damage Analysis
 - Excessive permanent deformation controls failure
 - Deformation is governed by the vertical compressive stresss on top of subgrade
 - Based on highway experience
 - Number of allowable repetitions (N_d) before failure

$$N_d = 4.837 \times 10^{-5} \sigma_c^{-3.734} E_s^{+3.583}$$

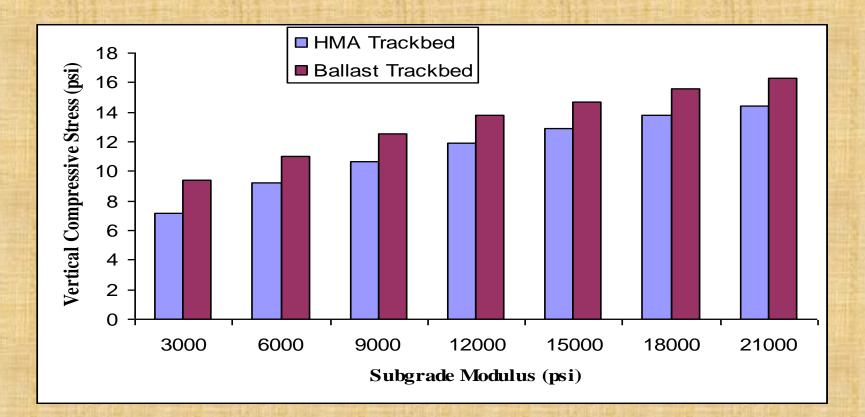

Stresses and Strains

Asphalt Trackbed

All-Granular Trackbed

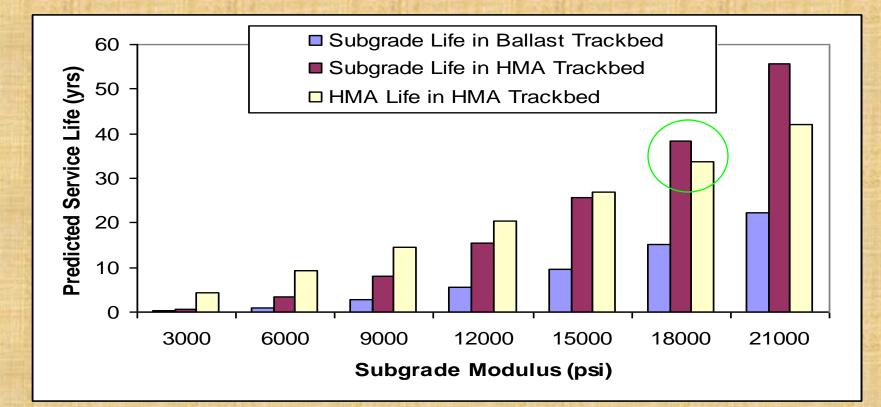
Subgrade Layer

Subgrade Layer

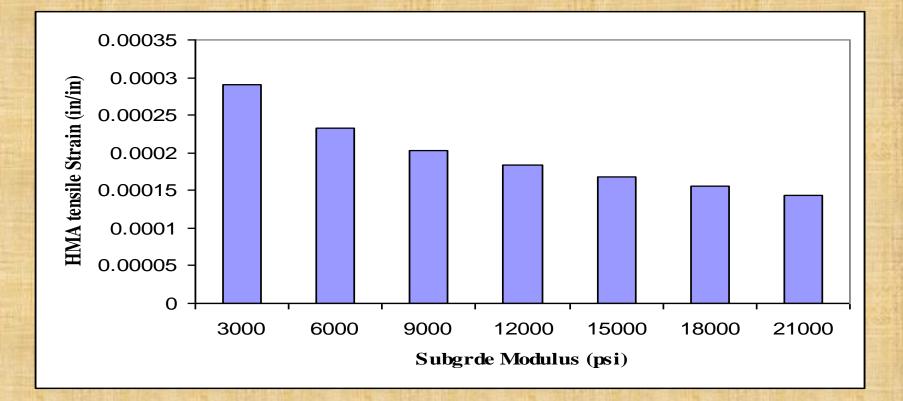

Methodology

Critical outputs for the two sections

Critical Outputs				
Variable	Standard HMA trackbed	Standard Ballast Trackbed		
Subgrade Vertical Compressive Stress (psi)	11.9	13.8		
HMA Tensile Strain (in/in)	0.000183	N/A		
Service life of Subgrade (yrs)	15.2	5.6		
Service life of HMA (yrs)	19.8	N/A		


Effect of Subgrade Modulus on σ_c

Axle Load – 36 tons


Effect of Subgrade Modulus on L

Axle load - 36 tons

Effect of Subgrade Modulus on ε_t

Axle load – 36 tons

Predictive Values Versus In-track Data

Comparison of the KENTRACK Predictive values (KPV) Versus In-Track Data (ITD) for the CSX Mainline at Conway, Kentucky				
Thickness Ballast- HMA inches	Vertical Compressive Stress on Ballast KPV/TTD psi	Vertical Compressive Stress on HMA KPV/TTD psi	Vertical Compressive Stress on Subgrade KPV/TTD psi	
10 / 5	47.9 / -	21.0 / 16.0	13.6 / -	
10/8	48.7 / -	22.0/15.0	11.7 / -	

Comparison of the KENTRACK Predictive values (KPV) Versus In-Track Data (ITD) at TTCI in Pueblo, Colorado				
Thickness Ballast- HMA inches	Vertical Compressive Stress on Ballast KPV/TTD psi	Vertical Compressive Stress on HMA KPV/TTD psi	Vertical Compressive Stress on Subgrade KPV/TTD psi	
12/4	43.5 / -	11.7 / 14.9	8.3 / 8.0	
8/8	47.0/-	21.9 / 114.9	8.2 / 7.7	

Summary

- KENTRACK is a versatile program that can be used to analyze HMA and all-granular trackbeds
- HMA trackbeds improve the service life and perform better than all-granular trackbeds
- Damage analysis values are conservative
- Subgrade modulus is a very important factor in trackbed design